Unsupervised structure classes <i>vs.</i> supervised property classes of silicon quantum dots using neural networks

نویسندگان

چکیده

Scientific intuition can help anticipate the outcome of experiments, but machine learning based on data does not always support these assumptions. A direct comparison human intelligence (HI) and AI suggests domain knowledge is enough.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Scoring Using Supervised and Unsupervised Neural Networks

Some of the concerns that plague developers of neural network decision support systems include: (a) How do I understand the underlying structure of the problem domain; (b) How can I discover unknown imperfections in the data which might detract from the generalization accuracy of the neural network model; and (c) What variables should I include to obtain the best generalization properties in th...

متن کامل

Offline Signature Verification Using Supervised and Unsupervised Neural Networks

offline systems have only the static image containing the signature as an input, without having any knowledge on the signing process. Some difficulties that may arise in offline systems are related to the scanning process (noise on the image) and to the signature acquisition process where different pen tips and widths can produce different shapes, in this Dissertation work image preprocessing i...

متن کامل

Characterization of Temporal Property Classes

This paper presents two novel characterizations of the classes of properties of reactive systems in terms of their expression by temporal logic. The rst family of characterizations concerns the safety-progress clas-siication, which describes a hierarchy within the set of temporal properties. Previous characterizations of this hierarchy depended critically on the use of past temporal operators. ...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

"Teachers and Classes" with Neural Networks

A convenient mapping and an eecient algorithm for solving scheduling problems within the neural network paradigm is presented. It is based on a reduced encoding scheme and a mean eld annealing prescription, which was recently successfully applied to TSP. Most scheduling problems are characterized by a set of hard and soft constraints. The prime target of this work is the hard constraints. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nanoscale horizons

سال: 2021

ISSN: ['2055-6756', '2055-6764']

DOI: https://doi.org/10.1039/d0nh00637h